Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
Journal Article

Estimating a Rider’s Compensatory Control Actions by Vehicle Dynamics Simulation to Evaluate Controllability Class in ISO 26262

2020-01-24
2019-32-0537
Controllability is defined in ISO 26262 as a driver’s ability to avoid a specified harm caused by a malfunction of electrical and electronic systems installed in road vehicles. According to Annex C of Part 12 of ISO 26262, simulation is one of the techniques that the Controllability Classification Panel (CCP) can use to evaluate comprehensively the controllability class (C class) of motorcycles. With outputs of (i) an index for the success of harm avoidance and (ii) the magnitude of the rider’s compensatory control action required to avoid harm, the simulation is useful for evaluating the C class of the degrees of malfunction that cannot be implemented in practice for the sake of the test rider’s safety. To aim at supplying data that the CCP can use to judge the C class, we try to estimate the vehicle behavior and a rider’s compensatory control actions following a malfunction using vehicle dynamics simulations.
Technical Paper

MR20DD Motoring Fuel Economy Test for 0W-12 and 0W-8 Low Viscosity Engine Oil

2019-12-19
2019-01-2295
The SAE J300 classification was expanded to 0W-12 and 0W-8 viscosity grades in 2015, and lower viscosity engine oils have been studied in the industry. ILSAC GF-6B that will be introduced in 2020 will specify a 0W-16 requirement, but 0W-12 and 0W-8 grades are not considered. Because engine oil equal to or higher than the 0W-20 grade is recommended for almost all engines globally, suitable engine tests for 0W-12 and 0W-8 do not exist. Therefore, the Japan Automobile Manufacturers Association, Petroleum Association of Japan and Society of Automotive Engineers of Japan decided to establish new 0W-12 and 0W-8 low viscosity engine oil specifications. It is referred to as JASO GLV-1, and together with a new fuel economy engine test procedure, these engine oils for better fuel economy will be put on the Japanese market in 2019. Motoring friction torque tests are widely used to ascertain the friction reduction effect of fuel-economy engine oils.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Direct Visualization of Soot and Ash Transport in Diesel Particulate Filters during Active Regeneration Process

2019-12-19
2019-01-2287
This study employed a diesel particulate generator (DPG), with an installed engine oil injector for soot and ash accumulation in a diesel particulate filter (DPF). Ash was generated by engine oil injection into the diesel burner flame. The amount of soot accumulation per loading varied from 0.5 g/L to 8 g/L while ash accumulation amount per loading was maintained at 0.5 g/L. Initially, ash accumulation distribution in the DPF was visualized using X-ray computed tomography (CT). It was revealed that the form of ash accumulation changed depending on the amount of soot accumulation before active regeneration, i.e., a large amount of soot accumulation resulted in plug ash, whereas a small amount of soot accumulation resulted in wall ash. To clarify ash accumulation mechanisms, soot and ash transport behavior in DPF during active regeneration process was directly observed using a high-speed camera through an optically accessible D-shaped cut DPF covered with a quartz glass plate.
Technical Paper

Prediction of Oil Dilution by Post-injection in DPF Regeneration Mode

2019-12-19
2019-01-2354
This work investigated the mechanism of oil dilution by post injection to remove accumulated particulate matter on the diesel particulate filter of diesel engines. We developed a model to simulate post injection spray under low ambient gas pressure conditions. The model can predict the quantity of fuel mass adhered on the cylinder wall. The adhered fuel enters oil sump through the piston ring and cause oil dilution. The fuel in diluted oil evaporates during normal engine operations. We focus on the mechanism of fuel evaporation from diluted oil. The effects of engine speed and oil temperature on the evaporation were investigated. The results showed that the fuel evaporation rate increases with increasing engine speed and oil temperature. Furthermore, we developed an empirical model to predict the fuel evaporation rate of diluted oil through regression analysis with measured data.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Influence of Key Section Parameters of Exhaust Port on Flow Capacity

2019-04-02
2019-01-0200
A three-dimensional model of a diesel engine exhaust port was established. The reliability of modeling method and the exhaust port model were verified by the steady-flow test, PIV test and pressure field test. Based on the exhaust port model, the influence of the key section parameters such as inlet area S1, throat area S2, and outlet area S3 on the flow capacity of the exhaust port was studied. The results show that, under different pressure difference and exhaust back pressure conditions, the mass flow rate increases first and then converges with the increase of the area ratio of outlet and inlet or the area ratio of throat and inlet. With the increase of the relative pressure difference, the optimal area ratio of outlet and inlet decreases and converges to 1.02, but the optimal area ratio of throat and inlet increases and converges to 1.13.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Combustion Characteristics in a Constant Volume Chamber of Diesel Blended with HTL

2019-04-02
2019-01-0578
There are a few different ways in which biofuels can be sourced, with the most popular coming from agricultural sources. An alternative approach is to utilize biowaste. An estimated 20 million dry tons of volatile organic compounds, or biowaste, is annually deposited in US municipal wastewaters. Most of this biowaste energy content is not recovered and, as a result, the biowaste could be a massive potential source of renewable energy. Biocrude diesel is converted from wet biowaste via hydrothermal liquefaction (HTL). Three types of feedstocks (algae, swine manure, and food processing waste) were converted into biocrude oil via HTL. From the previous experiments done in an AVL 5402 single-cylinder diesel engine, it was observed that the presence of 20% of HTL in the blend performed similarly during combustion to pure diesel. By studying these mixtures in a constant volume chamber, these observations could be compared to the results in the diesel engine.
Technical Paper

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling

2019-04-02
2019-01-0432
The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation.
Technical Paper

Influence of Intake Valve Lift on Flow Capacity of Intake Port

2019-04-02
2019-01-0223
A three-dimensional model of a diesel engine intake port was established and was verified by steady-flow test. Based on this model, the influence of intake valve lift on the flow capacity of intake port was studied and a design method of maximum valve lift was put forward. The results show that, under different intake pressure and relative pressure difference conditions, the discharge coefficient increases first and then converges with the increase of valve lift. Under the same valve lift condition, with the increase of relative pressure difference, the discharge coefficient decreases slightly in subsonic state and decreases sharply from subsonic state to supersonic state, but the mass flow rate increases slightly. The optimum ratio of valve lift and valve seat diameter is related to relative pressure difference, it increases first and then keeps constant with the increase of relative pressure difference.
Technical Paper

Response Decoupling Method in Mount Design with Emphasis on Transient Load Conditions

2019-01-18
2018-01-5046
This research examined the focused design, elastic design, energy decoupling, and torque roll axis (TRA) decoupling methods for mount optimization design. Requiring some assumptions, these methods are invalid for some load conditions and constraints. The linearity assumption is advantageous and simplifies both design and optimization analysis, facilitating engineering applications. However, the linearity is rarely seen in real-world applications, and there is no practical method to directly measure the reaction forces in the three locally orthogonal directions, preventing validation of existing methods by experimental results. For nonlinear system identification, there are additional challenges such as unobservable internal variables and the uncertainty of measured data.
Technical Paper

Simulation Techniques for Determining Motorcycle Controllability Class according to ISO 26262

2018-10-30
2018-32-0060
The ISO 26262 standard specifies the requirement for functional safety of electrical and electronic systems within road vehicles. We have accumulated case studies based on actual riding tests by subjective judgment of expert riders to define a method for determining the controllability class (C class). However, the wide variety of practical traffic environments and vehicle behaviors in case of malfunction make it difficult to evaluate all C classes in actual running tests. Furthermore, under some conditions, actual riding tests may cause unacceptable risks to test riders. In Part 12 Annex C of ISO/DIS 26262, simulation is cited as an example of a technique for comprehensive evaluations by the Controllability Classification Panel. This study investigated the usefulness of mathematical simulations for evaluating the C class of a motorcycle reproducing a malfunction in either the front or rear brakes.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Application of Vortex Control to an Automotive Transcritical R744 Ejector Cycle

2018-04-03
2018-01-0060
Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycles is that the ejector cycle performance is sensitive to working condition changes which are common in automotive applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. The ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect ejector cycle COP. This paper presents the experimental results of the application of a new two-phase nozzle restrictiveness control mechanism to an automotive transcritical R744 ejector cycle.
Technical Paper

Oil Circulation Rate in Ejector Cooling Cycles

2018-04-03
2018-01-0077
In this study, the influence of compressor speed, ejector motive nozzle needle position and evaporator inlet metering valve opening on the oil circulation rates (OCRs) of an automotive R744 transcritical standard ejector cycle was experimentally investigated. Significantly higher OCR (~10%) was observed at the evaporator inlet of the ejector cycle than at the high pressure side. It has been observed that evaporator OCR was increased with increasing compressor speed. When the motive nozzle needle moved towards the nozzle throat, both compressor discharge flow rate and evaporator OCR were observed to be significantly lowered. As the evaporator inlet metering valve opening was adjusted, the compressor mass flow rate did not vary significantly while the evaporator mass flow rate decreased with decreasing metering valve opening. The evaporator OCR decreased from 6.5% to 2.2% as the metering valve opening varied from 86% to 27%.
X